Female athlete triad: past, present, and future directions
Review Article

女运动员三联征:过去,现在和未来方向

William A. Ranson, Diana C. Patterson, Alexis C. Colvin

Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Contributions: (I) Conception and design: All authors; (II) Administrative support: DC Patterson, AC Colvin; (III) Provision of study materials or patients: WA Ranson; (IV) Collection and assembly of data: WA Ranson; (V) Data analysis and interpretation: WA Ranson; (VI) Manuscript writing: All authors (VII) Final approval of manuscript: All authors. .

Correspondence to: William A. Ranson. 50 E 98th St #9H-1, New York, NY 10029, USA. Email: will.ranson@icahn.mssm.edu.

摘要:自1972年美国教育法修正案第九条通过以来,女性参与体育运动的人数显著增加。更多的女孩和年轻女性能够体验到有组织的体育运动给身心健康带来的益处。但随着参与人数的增加,一种危险的、但被普遍低估的体育相关疾病——女运动员三联征也急剧增加。三联征最初被定义为患有饮食失调(DE)、闭经和骨质疏松症。进一步的研究表明,这些诊断标准的范围太过局限,目前的三联征定义已经演变为能量利用率(EA)降低、月经失调和骨密度(BMD)降低之间的动态相互关系。如果不给予治疗,远期后果包括不可逆转的骨密度(BMD)下降和潜在的肌肉骨骼损伤倾向。一线疗法通常是非药物治疗,旨在改变饮食结构和运动行为。对于拒绝运动行为的病例,可能会使用某些药物治疗,但这种做法仍具争议。虽然目前尚未有可推荐的药物治疗方法,但最近的一项临床试验提供了令人信服的证据,其表明了进一步研究的价值。

关键词:女运动员三联征;三联征;闭经;骨骼健康;能量利用(EA)


Received: 30 November 2017; Accepted: 18 December 2017; Published: 11 January 2018.

doi: 10.21037/aoj.2017.12.09


背景

自1972年美国联邦立法通过教育法修正案第九条至今,女性参与各级别有组织的体育运动的人数急剧增加。该项法律条款的目的是为了消除所有接受联邦财政支持的教育活动中的性别歧视,其中包括学校批准的运动队[1]。在修正案第九条颁布的前一年,即1971年,美国约有310,000名女运动员,仅为女性人口的0.29%[2,3]。到2012年,参与运动的女性人数已攀升至3,373,000人,其中2.15%的美国女性人口参加了一定程度有组织的体育运动[4]。不出所料,随着女性参与运动人数的增加,与运动相关的损伤和疾病也随之增加。

在整个20世纪70年代,女性运动员自我报告和医生观察到的月经初潮改变的增加引起了研究人员的注意。1977年,Malina和Spirduso的报告指出,与非运动员相比,高中、大学和奥运会级别女运动员的月经初潮年龄推迟[5]。在20世纪80年代,有文献调查了年轻女运动员月经初潮改变、饮食失调(DE)和骨量减少之间的关系[6-8]。在越来越多的文献支持下,人们越来越关注这一问题,美国运动医学院(ACSM)于1992年召开了小组会议,并为进一步采取一致的预防和治疗方法奠定了基础[9]。在这次会议上,女运动员三联征一词首次被定义为一种综合征,包括但不局限于在参与体育运动的女孩和年轻女性中发现的饮食失调(DE)、闭经和骨质疏松。

在1992年美国运动医学院(ACSM)发表三联征定义之后,有文献立即开始表现出对该定义局限性的不满。特别值得注意的是,当时的诊断定义只包括了三联征严重的临床表现,而忽视了那些临床症状表现不太严重的运动员[10]。De Souza和Williams在2004年提出需进一步扩展三联征定义,包括饮食失调、闭经和骨质疏松的亚临床表现[11]。该提议已于2007年成功纳入ACSM Position Stand期刊,此后,三联征的诊断标准也经历几次重要的改变。首先,Position Stand期刊建立了滑动模型,该模型可呈现出运动员从患病到最佳康复状态的连续过程中,某个时间点三联征每个症状的相互关系。此外,三联征的定义被进一步扩展,低能量利用(EA)取代了饮食失调(DE),月经失调取代了闭经,低骨密度(BMD)取代了骨质疏松[12]。2014年,女运动员三联征联盟(FATC)发表了一份全面共识声明,并随后得到了ACSM的认可,该声明重申了2007年ACSM Position Stand期刊中对三联征的诊断定义,并强调了早期干预在避免长期损害方面的重要性[13]


定义

根据美国运动医学院(ACSM)的定义,女运动员三联征是低能量利用(EA),月经失调和低骨密度的一系列异常表现[12]。这三种异常状态已经被证实是密切相关的,患者可表现出三种异常状态中的任何一种从健康到患病过程中不同程度的不同症状。重要的是,由于三种症状中每一个都可能具有亚临床表现,如果不加以处理,这些亚临床表现仍会造成严重的长期危险后果,因此运动员只要表现出三种症状中的一种症状,即可确诊为女运动员三联征[13]

能量利用(EA)下降

该症状最初被称为“饮食失调”(DE),2007被细化为一系列“能量利用”症状,是指摄入的饮食能量减去运动的消耗能量。低能量利用可能是由于饮食摄入不足、能量消耗过多或两者兼而有之。重要的是,即使患者没有被诊断患有特异性进食障碍(ED)或饮食失调(DE)[12],他们仍可能被定义为正经历低能量利用(EA)。低能量利用(EA)的明显指标包括BMI≤17.5kg/m2或低于青少年预期体重的85%[12]。从数量上来说,低能量利用(EA)定义为能量摄入(千卡)减去由于运动能量消耗(千卡)除以无脂体重千克数(FFM),女性运动员的低能量利用(EA)被认为是每天低于45千卡/千克无脂体重[12,14]。此外,静息代谢率(RMR)降低和三碘甲状腺原氨酸(T3)低是对慢性能量缺乏的生理代偿,应被视为低能量利用(EA)的诊断指标[15,16]

月经失调

月经失调是指从黄体期缺陷到闭经(原发性和继发性)的一系列症状[17]。原发性闭经定义为未能达到正常月经初潮。美国妇产科医师学会(ACOG)指出,15岁时没有月经初潮或乳房开始发育(TannerⅡ期乳房发育阶段)三年后仍未有月经初潮,需要进一步排查[18]。继发性闭经是指有月经初潮,而且一段时期内有规律的月经来潮,之后出现连续三个月没有月经。月经稀发类似于继发性闭经,发生在月经初潮之后,但不是月经周期完全停止,是月经周期大于35天[20]。无排卵和黄体期缺乏也可诊断为月经失调,但与闭经和月经稀发不同,它们是无症状的,因此仅根据临床病史很难诊断[17]

低骨密度

低骨密度是三联征中第三个决定性特征,被认为是闭经和相关生理激素循环障碍的下游效应。骨密度评估的金标准是骨骼元素双能X光吸收测量法(DEXA)测量。根据扫描结果,计算Z值,将患者的骨密度与性别和年龄匹配的普通人群样本进行比较。国际临床骨密度测定学会(ISCD)对低骨密度的定义用于儿童、青少年和绝经前妇女的诊断[21]。对于儿童和成人,Z值< -1.0视为异常,Z值< -2.0诊断为低骨密度[22]。低骨密度在临床上表现为女性运动员的脊椎骨或长骨的应力性骨折。


流行病学

在过去的几十年里,人们对久坐的高中生到优秀女性耐力运动员三联征的流行特点开展了大量的研究[23-41]。然而,由于不同的研究方法和不断变化的诊断标准,这些研究中几乎所有单独和组合症状的患病率都有很大差异。例如,2007年美国运动医学院(ACSM)改变诊断标准用低能量利用(EA)代替饮食失调(DE)的改变,使得确诊率更加困难。迄今为止,尚未进行任何研究来确定女性运动员中低能量利用(EA)的患病率[24]

目前研究一致认为,低能量利用(EA)是三联征的潜在病因。参与“瘦身”运动的运动员比参与“非瘦身”运动的运动员更大程度地受到影响便不足为奇,因为“瘦身”运动的参与者重视耐力训练及塑造健美、精瘦、低体重的体型[23,25]。迄今为止的三项研究同时调查了年轻女性运动员三联征中所有症状的患病率,发现瘦身运动员的患病率为1.5%~6.7%,而非瘦身运动员的患病率为0.0%~2.0%[25-27]。此外,在一项对186名40岁以下的优秀女运动员进行的研究中,35.6%的瘦身运动员表现出饮食失调(DE)和月经失调,而只有13.5%的非瘦运动员表现出这种症状[25]。其他多名研究者也证实了瘦身运动员和非瘦身运动员患有饮食失调(DE)和月经失调的类似疾病率趋势[26,28,29]

三联征中任何单一症状的患病率在各项研究之间差异很大。例如,在一项对84名大学生运动员的研究中,饮食失调(DE)的患病率为7.1%,在一项对67名马来西亚优秀女运动员的研究中,患病率为89.2%。尽管如此,大多数研究认为女性运动员中的饮食失调(DE)患病率在15%~30%之间[30-36]。同样,在受试者自我报告或受调查月经史的研究中,月经失调的患病率在6%~79%之间[25,27,28,32,42]。为了提高准确性和精确度,一些研究利用激素水平测量来诊断月经失调。这种研究方法发现,女性运动员月经失调的患病率在41%~50%之间[37-39]

尽管历史上广泛使用世界卫生组织的T值,但最近的研究已经转向使用ISCD Z值来诊断低骨密度。与仅控制性别的T值[43]不同,Z值控制年龄和性别,被认为是较年轻人群中低骨密度的更好衡量标准[44]。利用Z值的研究表明,年轻女性运动员的低骨密度患病率(定义为Z值< -1.0)在10%~25%之间[24,27,28,35],而耐力运动员的患病率往往更高,在30%~40%之间[40,41]


诊断

低能量利用

低能量利用(EA)的筛查一般从详细的饮食规律、运动和饮食习惯开始。确定一个人的能量利用可以通过3天或7天的饮食记录、24小时的食物回忆记录或食物频率问卷[13]。虽然管理和完成相对简单,但这种方法依赖于自我报告,结果可能不准确[45]。当自我报告可疑或不可靠时,内科生理指标变得更加重要。其中包括近期体重减轻或出现特异性进食障碍(ED)或饮食失调(DE)的迹象,如心动过缓、多毛、牙列不齐、直立性低血压、腮腺炎和Russell征,由于长时间反复自我诱发呕吐而出现的指关节或手背胼胝形成[12,13,46,47]。重要的一点是,近期体重没有下降并不排除低EA的存在,研究表明,在某些条件下,身体会优先破坏生理功能以稳定体重[8,12,48-50]

研究表明某些代谢异常与三联征有关。血清生长激素(GH) [51]、生长素释放素[52,53]、多肽YY激素 (PYY) [53]和24小时尿皮质醇[39]的浓度升高,胰岛素[54]、血糖[54]、血清三碘甲状腺原氨酸(TT3) [15,52]和胰岛素样生长因子-1 (IGF-1) [55]的水平降低与三联征人群有关。虽然这些发现并不具有特异性,但当仅靠病史和体格检查证据不足时,这些血液检测可用于帮助诊断[13]

月经失调

继发于低能量利用(EA)的月经失调的诊断是排除标准之一[13]。当患者主诉怀疑其有月经失调临床症状时,2014年FATC共识建议使用Jameson等人编写的内分泌学教科书中的改良方法[56]。首先应进行病史询问和体格检查,以排除子宫病变、输卵管梗阻和性别分化障碍,因为这些都可导致原发性闭经。必须通过尿检排除怀孕。原发性卵巢功能不全是闭经最常见的原因之一,可以通过检测卵泡刺激素(FSH)水平来排除。高泌乳素血症和甲状腺功能异常可分别通过检测催乳素和促甲状腺激素(TSH)检测排除。下丘脑和垂体疾病的存在可以通过血清雌二醇或孕酮激发试验来评估,以量化低雌激素水平。最后,通过测量睾酮(总睾酮和游离睾酮)和脱氢表雄酮及其硫酸盐(DHEA/硫)[13]并结合清晨17-羟基孕酮测试(评估非典型21-羟化酶缺乏)和盆腔超声,可以排除高雄激素性疾病,包括多囊卵巢综合征、男性卵巢肿瘤、肾上腺肿瘤、非典型先天性肾上腺增生和库欣综合征[13,57,58]

低骨密度

低骨密度是三联征的第三个组成部分,可使用双能X射线吸收测定法进行分析。对于小于20岁的儿童和青少年,应使用脊柱的前后位(PA)X光图像和全身少头(TBLH)图像[59]。对于年龄≥20岁的成年人,应使用腰椎的前后位(PA)X光图像和髋关节图像[60]。从这些扫描中,可以计算出Z值。对于儿童和成人,Z值 < -1.0被视为异常,Z值 <- 2.0被诊断为低骨密度[22]。在这两种情况下,应深入调查既往有无骨折和相关创伤病史。


病因和结果

低能量利用(EA)是三联征的基础病因,并产生涓滴效应,改变了月经功能、骨密度和心血管健康[11]。当EA下降到某个阈值以下,约30千卡/千克FFM/天,就会发生生理转变,能量代谢供应从高消耗的生殖功能转向维持基本生命体征[61]。结果,下丘脑释放的促性腺激素(GnRH)减少,导致循环雌激素水平急剧下降。研究表明,考虑到早期识别和治疗的重要性,EA下降至低于30千卡/千克FFM/天,5天内会导致月经失调[50,62-67]

患有月经失调的女性运动员的肌肉骨骼健康尤其令人担忧,是因为逆转骨吸收需要高水平的雌激素来维持[68,69]。在闭经运动员中,只要雌激素水平降低,骨密度就会持续下降[70,71],导致肌肉骨骼损伤的风险不断增加[72-75]。更令人不安的是,到18岁时,女性通常已经积累了90%~95%的峰值骨密度,并将努力在整个成年期努力维持这一骨量[76-78]。在此期间未能达到峰值骨量会使这些人在整个成年期易患临床低骨密度,导致其整个成年期疼痛和潜在破坏性应力性骨折的发生率增加[79,80]。强调早期发现和干预的重要性,是由于对已发生病例的研究表明,由于低EA和月经失调导致的骨密度累积损失可能是不可逆的[70,81,82]

近期文献提出心血管健康的有害变化(虽然它不是三大症状之一)也可能与三联征有关[11]。据推测,HPG(下丘脑-垂体-性腺)轴的中断可能会降低内皮功能,使女性运动员易患早期心脏病。雌激素是促进一氧化氮(NO)产生和血管内皮释放所必需的[83]。内皮源性NO具有血管舒张特性促进抗动脉粥样硬化作用,而闭经运动员中抑制一氧化氮释放与血管血流介导的扩张(FMD)减少、总胆固醇和低密度脂蛋白升高以及整体心血管健康下降有关[84-86]。这有必要进行额外的长期前瞻性研究。


治疗方法

非药物治疗

营养干预是针对于有症状的女运动员的一线治疗方案,因为它最直接地针对潜在病因[87]。通过改变饮食结构、运动频率和强度,或者两者兼而有之,运动员的能量状态必须首先正常化。在FATC 2014年发布的回归运动(RTP)指南中,建议患者逐渐增加体重,最好将其能量摄入增加到基线需求的20%~30%,以实现每7至10天约0.5公斤的体重增加目标[13]。另外有研究表明,体重增加1-4公斤与月经恢复有关,但是这一数字因人而异。目标能量利用(EA)为45千卡/千克 FFM/天,绝对比单纯增重更好[47,87-89]

虽然增加EA是每个运动员的主要治疗方法,但适合个体调整低EA方式的具体建议会各不相同。对于在没有饮食失调(DE)的情况下导致低EA的原因是饮食摄入不足,转诊给运动营养师进行营养教育就可以了。如果低EA的原因是DE,运动员则应该被转诊到内科医师进行评估和咨询,或者接受心理健康专家的心理治疗,或者由咨询营养师提供专业的营养方案[12,90]

通过非药物方法治疗低EA的目标是逆转患者的能量不足,使HPG轴和骨代谢正常化。在开始治疗的最初几天,可能在体重明显增加之前,激素代谢水平便会得到改善,骨形成将会上调[13,64]。体重增加到45千卡/千克 FFM/天的能量利用(EA)目标需要数月,但根据症状的严重程度,可能会更短[13]。运动女性体重增加与月经恢复有关[89,91-93]。但在一些病例中,在治疗开始和体重增加后超过一年才出现月经[47,92,94]。BMD的提高,继发于激素代谢水平的改善,体重增加时负重的增加,黄体生成素的合成恢复,被认为是最终发生的生理变化。然而,现有文献对是否能完全恢复适合年龄和体型的骨密度水平存在分歧[81,95,96]

药物治疗

三联症的药物治疗仍有争议,最近的FATC共识指出,由于缺乏循证研究,无法明确推荐药物治疗[13]。尽管有这一指南,但当更保守的非药物治疗被证明无效时,相关医生通常会开出药物治疗方案。在这种情况下,尽管进行了12个月的保守治疗,但骨密度加剧恶化伴有复发性长骨骨折、长时间闭经或进食障碍(ED)的发展通常被认为有充足理由使用药物干预[13,87]

患有进食障碍(ED)的年轻女性需要跨学科的治疗方法,特别是咨询心理健康专业人员。虽然这些病例的最初治疗方案为非药物方法,如积极的心理学和行为疗法[97],但某些处方药物可能会非常有效,特别是选择性5-羟色胺再摄取抑制剂(SSRI)的使用已被证明有助于神经性暴食症的治疗[98],同时越来越多的证据表明奥氮平可用于治疗由于神经性厌食症(AN)所引起体重变化[99-101]

近年来用于治疗年轻女性低骨密度的药物疗法大多数都围绕着性激素的替代药品[13]。在认识到低雌激素水平及其对闭经运动员的影响后,联合口服避孕药 (COC) 疗法成为治疗方案的主流。理论上,COC疗法将人为地提高雌激素水平,降低破骨细胞骨吸收活性,最终增加骨密度[87]。然而,进一步的研究表明,虽然COC确实提高了雌激素水平,但这种治疗并未使闭经运动员的骨密度得到持续改善[102-106]。一般认为,COC药物在肝脏中的首过代谢降低了肝脏的IGF-1 生成[107-109]。总的来说,COC疗法确实减缓了破骨细胞的骨吸收,但其对骨的营养激素水平的负面影响占主导地位[103,105]

最近Misra等人对患有神经性厌食症的青春期女孩们进行的一项RCT评估中,使用了雌二醇(100毫克17-B-雌二醇)透皮贴剂和周期口服孕激素(甲羟孕酮2.5毫克/天,10天/月)[110]。在为期18个月的试验中,研究中包括的三个测量时间点均报告了腰椎骨密度的增加。此外,在 18 个月的试验中,IGF-1 的变化显示透皮雌二醇组和安慰剂组之间没有显着差异[110]。一般认为,雌二醇非口服给药绕过了首通代谢,避免了肝脏IGF-1分泌的减少,并最终产生了增加骨密度的期望效果[109-112]

此外,一些通常用于治疗老年和绝经后女性低骨密度的药物已用于年轻女运动员[113,114]。双膦酸盐(一种削弱破骨细胞功能和减缓骨吸收的化合物)已被考虑使用[115]。然而,它们具有非常长的半衰期和显著的致畸性[116,117]。鉴于此副作用,一般建议双膦酸盐只能作为最后治疗手段,并且要格外小心[13,118]。重组甲状旁腺激素(rPTH)正被研究用于年轻闭经运动员,但尚未有关于其安全性和有效性的公开研究[114,118,119]


回归运动

尽管对危险因素、诊断和治疗进行了持续研究,但直到最近才有关于运动员康复和回归运动(RTP)的标准化指南。为了解决此问题,2014年FATC共识概述了基于分数的累积风险评估计算和相应的RTP风险分层标准,以方便医生使用和患者管理的标准化[13]。累积风险评估工作表根据严重程度递增的等级将六个风险因素的临床表现进行分级。综合评分后将患者分为三类:完全康复、暂时/有限康复,训练和比赛受限。到目前为止,还没有研究来评估所提议RTP方案的有效性。

做出RTP决策时,可采用参与患者治疗的多学科医疗专业团队意见,同时其他相关方(如父母和教练)的意见也十分有价值。然而,最重要的是运动员的医生将对RTP做出最终决定[120-122]。由于目前缺乏证据来验证所提议的RTP评估和指南,以及每个运动员情况各不相同,RTP决策更多地被视为一门艺术,而不是科学。医生必须结合患者过去的病史、实验室检查、所从事的运动以及可能存在的任何利益冲突,考虑各方面的意见[123]。在做出如此艰难的决定时,患者当前和未来的健康状况在任何情况下都必须优先于外部压力和环境。


Acknowledgments

Funding: None.


Footnote

Provenance and Peer Review: This article was commissioned by the editorial office, Annals of Joint for the series “Orthopaedic Sports Injuries in Youth”. The article has undergone external peer review.

Conflicts of Interest: The series “Orthopaedic Sports Injuries in Youth” was commissioned by the editorial office without any funding or sponsorship. DCP served as the unpaid Guest Editor of the series. ACC served as the unpaid Guest Editor of the series and serves as an unpaid editorial board member of Annals of Joint from Jun 2016 to May 2018. ACC is Committee Member of AAOS. The authors have no other conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.


References

  1. Title IX, Education Amendments of 1972. Cited 2017 Feb 2. Available online: https://www.dol.gov/oasam/regs/statutes/titleix.htm
  2. Barra A. Before and After Title IX: Women in Sports - Interactive Feature - NYTimes.com. New York Times. 2012. Cited 2017 Feb 2. Available online: http://www.nytimes.com/interactive/2012/06/17/opinion/sunday/sundayreview-titleix-timeline.html?_r=1&#/#time12_264
  3. Centers for Disease Control and Prevention. Population by age groups, race, and sex for 1960-97. 1998. Cited 2017 Feb 2. Available online: https://www.cdc.gov/nchs/data/statab/pop6097.pdf
  4. United States Census Bureau. Annual Estimates of the Resident Population by Sex, Race, and Hispanic Origin for the United States, States, and Counties: April 1, 2010 to July 1, 2014. 2014. Cited 2017 Dec 5. Available online: https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk
  5. Malina RM, Spirduso WW, Tate C, et al. Age at menarche and selected menstrual characteristics in athletes at different competitive levels and in different sports. Med Sci Sports 1978;10:218-22. [PubMed]
  6. Warren MP, Brooks-Gunn J, Hamilton LH, et al. Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med 1986;314:1348-53. [Crossref] [PubMed]
  7. Howat PM, Carbo ML, Mills GQ, et al. The influence of diet, body fat, menstrual cycling, and activity upon the bone density of females. J Am Diet Assoc 1989;89:1305-7. [PubMed]
  8. Marcus R, Cann C, Madvig P, et al. Menstrual function and bone mass in elite women distance runners. Ann Intern Med 1985;102:158-63. [Crossref] [PubMed]
  9. Yeager KK, Agostini R, Nattiv A, et al. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc 1993;25:775-7. [Crossref] [PubMed]
  10. Slater J, Brown R, McLay-Cooke R, et al. Low Energy Availability in Exercising Women: Historical Perspectives and Future Directions. Sports Med 2017;47:207-20. [Crossref] [PubMed]
  11. De Souza MJ, Williams NI. Physiological aspects and clinical sequelae of energy deficiency and hypoestrogenism in exercising women. Hum Reprod Update 2004;10:433-48. [Crossref] [PubMed]
  12. Nattiv A, Loucks AB, Manore MM, et al. The female athlete triad. Med Sci Sports Exerc 2007;39:1867-82. [Crossref] [PubMed]
  13. Joy E, De Souza MJ, Nattiv A, et al. 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad. Curr Sports Med Rep 2014;13:219-32. [PubMed]
  14. Loucks AB. Low energy availability in the marathon and other endurance sports. Sports Med 2007;37:348-52. [Crossref] [PubMed]
  15. De Souza MJ, Lee DK, VanHeest JL, et al. Severity of energy-related menstrual disturbances increases in proportion to indices of energy conservation in exercising women. Fertil Steril 2007;88:971-5. [Crossref] [PubMed]
  16. O’Donnell E, Harvey PJ, De Souza MJ. Relationships between vascular resistance and energy deficiency, nutritional status and oxidative stress in oestrogen deficient physically active women. Clin Endocrinol (Oxf) 2009;70:294-302. [Crossref] [PubMed]
  17. Weiss Kelly AK, Hecht S. COUNCIL ON SPORTS MEDICINE AND FITNESS. The Female Athlete Triad. Pediatrics 2016;138:e20160922 [Crossref] [PubMed]
  18. ACOG Committee on Adolescent Health Care. ACOG Committee Opinion No. 349, November 2006: Menstruation in girls and adolescents: using the menstrual cycle as a vital sign. Obstet Gynecol 2006;108:1323-8. [Crossref] [PubMed]
  19. Braverman PK, Sondheimer SJ. Menstrual disorders. Pediatr Rev 1997;18:17-25. [Crossref] [PubMed]
  20. . Committee opinion no. 605: primary ovarian insufficiency in adolescents and young women. Obstet Gynecol 2014;124:193-7. [Crossref] [PubMed]
  21. Lewiecki EM, Gordon CM, Baim S, et al. International Society for Clinical Densitometry 2007 Adult and Pediatric Official Positions. Bone 2008;43:1115-21. [Crossref] [PubMed]
  22. Baim S, Leonard MB, Bianchi ML, et al. Official Positions of the International Society for Clinical Densitometry and Executive Summary of the 2007 ISCD Pediatric Position Development Conference. J Clin Densitom 2008;11:6-21. [Crossref] [PubMed]
  23. Gibbs JC, Williams NI, De Souza MJ, et al. Prevalence of Individual and Combined Components of the Female Athlete Triad. Med Sci Sports Exerc 2013;45:985-96. [Crossref] [PubMed]
  24. Hoch AZ, Pajewski NM, Moraski L, et al. Prevalence of the female athlete triad in high school athletes and sedentary students. Clin J Sport Med 2009;19:421-8. [Crossref] [PubMed]
  25. Torstveit MK, Sundgot-Borgen J. The female athlete triad exists in both elite athletes and controls. Med Sci Sports Exerc 2005;37:1449-59. [Crossref] [PubMed]
  26. Quah YV, Poh BK, Ng LO, et al. The female athlete triad among elite Malaysian athletes: prevalence and associated factors. Asia Pac J Clin Nutr 2009;18:200-8. [PubMed]
  27. Beals KA, Hill AK. The prevalence of disordered eating, menstrual dysfunction, and low bone mineral density among US collegiate athletes. Int J Sport Nutr Exerc Metab 2006;16:1-23. [Crossref] [PubMed]
  28. Nichols JF, Rauh MJ, Lawson MJ, et al. Prevalence of the female athlete triad syndrome among high school athletes. Arch Pediatr Adolesc Med 2006;160:137-42. [Crossref] [PubMed]
  29. Thein-Nissenbaum JM, Carr KE. Female athlete triad syndrome in the high school athlete. Phys Ther Sport 2011;12:108-16. [Crossref] [PubMed]
  30. Beals KA, Manore MM. Disorders of the female athlete triad among collegiate athletes. Int J Sport Nutr Exerc Metab 2002;12:281-93. [Crossref] [PubMed]
  31. Burrows M, Shepherd H, Bird S, et al. The components of the female athlete triad do not identify all physically active females at risk. J Sports Sci 2007;25:1289-97. [Crossref] [PubMed]
  32. Cobb KL, Bachrach LK, Greendale G, et al. Disordered Eating, Menstrual Irregularity, and Bone Mineral Density in Female Runners. Med Sci Sports Exerc 2003;35:711-9. [Crossref] [PubMed]
  33. Holderness CC, Brooks-Gunn J, Warren MP. Eating disorders and substance use: a dancing vs a nondancing population. Med Sci Sports Exerc 1994;26:297-302. [Crossref] [PubMed]
  34. Nichols JF, Rauh MJ, Barrack MT, et al. Disordered eating and menstrual irregularity in high school athletes in lean-build and nonlean-build sports. Int J Sport Nutr Exerc Metab 2007;17:364-77. [Crossref] [PubMed]
  35. Rauh MJ, Nichols JF, Barrack MT. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athl Train 2010;45:243-52. [Crossref] [PubMed]
  36. Vardar SA, Vardar E, Altun GD, et al. Prevalence of the female athlete triad in edirne, Turkey. J Sports Sci Med 2005;4:550-5. [PubMed]
  37. Broocks A, Pirke KM, Schweiger U, et al. Cyclic ovarian function in recreational athletes. J Appl Physiol 1985;1990:2083-6. [PubMed]
  38. De Souza MJ, Toombs RJ, Scheid JL, et al. High prevalence of subtle and severe menstrual disturbances in exercising women: confirmation using daily hormone measures. Hum Reprod 2010;25:491-503. [Crossref] [PubMed]
  39. De Souza MJ, Miller BE, Loucks AB, et al. High Frequency of Luteal Phase Deficiency and Anovulation in Recreational Women Runners: Blunted Elevation in Follicle-Stimulating Hormone Observed during Luteal-Follicular Transition. J Clin Endocrinol Metab 1998;83:4220-32. [PubMed]
  40. Barrack MT, Rauh MJ, Nichols JF. Prevalence of and traits associated with low BMD among female adolescent runners. Med Sci Sports Exerc 2008;40:2015-21. [Crossref] [PubMed]
  41. Pollock N, Grogan C, Perry M, et al. Bone-mineral density and other features of the female athlete triad in elite endurance runners: a longitudinal and cross-sectional observational study. Int J Sport Nutr Exerc Metab 2010;20:418-26. [Crossref] [PubMed]
  42. Otis CL, Drinkwater B, Johnson M, et al. American College of Sports Medicine position stand. The Female Athlete Triad. Med Sci Sports Exerc 1997;29:i-ix. [Crossref] [PubMed]
  43. . Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1994;843:1-129. [PubMed]
  44. . Writing Group for the ISCD Position Development Conference. Diagnosis of osteoporosis in men, premenopausal women, and children. J Clin Densitom 2004;7:17-26. [Crossref] [PubMed]
  45. Heaney S, O’Connor H, Gifford J, et al. Comparison of strategies for assessing nutritional adequacy in elite female athletes’ dietary intake. Int J Sport Nutr Exerc Metab 2010;20:245-56. [Crossref] [PubMed]
  46. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Arlington, 2013. Available online: http://encore.llu.edu/iii/encore/record/C__Rb1280248__SDSM-V__P0,2__Orightresult__X3;jsessionid=ABB7428ECBC4BA66625EDD0E0C5AAFA5?lang=eng&suite=cobalt%5Cnhttp://books.google.com/books?id=EIbMlwEACAAJ&pgis=1
  47. Mallinson RJ, Williams NI, Olmsted MP, et al. A case report of recovery of menstrual function following a nutritional intervention in two exercising women with amenorrhea of varying duration. J Int Soc Sports Nutr 2013;10:34. [Crossref] [PubMed]
  48. Deuster PA, Kyle SB, Moser PB, et al. Nutritional intakes and status of highly trained amenorrheic and eumenorrheic women runners. Fertil Steril 1986;46:636-43. [Crossref] [PubMed]
  49. Kaiserauer S, Snyder AC, Sleeper M, et al. Nutritional, physiological and menstrual status of distance runners. Med Sci Sports Exerc 1989;21:120-5. [Crossref] [PubMed]
  50. Myerson M, Gutin B, Warren MP, et al. Resting metabolic rate and energy balance in amenorrheic and eumenorrheic runners. Med Sci Sports Exerc 1991;23:15-22. [Crossref] [PubMed]
  51. Waters DL, Qualls CR, Dorin R, et al. Increased pulsatility, process irregularity, and nocturnal trough concentrations of growth hormone in amenorrheic compared to eumenorrheic athletes. J Clin Endocrinol Metab 2001;86:1013-9. [PubMed]
  52. De Souza MJ, Leidy HJ, O’Donnell E, et al. Fasting ghrelin levels in physically active women: Relationship with menstrual disturbances and metabolic hormones. J Clin Endocrinol Metab 2004;89:3536-42. [Crossref] [PubMed]
  53. Scheid JL, Williams NI, West SL, et al. Elevated PYY is associated with energy deficiency and indices of subclinical disordered eating in exercising women with hypothalamic amenorrhea. Appetite 2009;52:184-92. [Crossref] [PubMed]
  54. Laughlin GA, Yen SS. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab 1996;81:4301-9. [PubMed]
  55. Laughlin GA, Yen SS. Hypoleptinemia in women athletes: Absence of a diurnal rhythm with amenorrhea. J Clin Endocrinol Metab 1997;82:318-21. [Crossref] [PubMed]
  56. Jameson JL, DeGroot LJ, de Kretser DM. Endocrinology: Adult and pediatric. Philadelphia: Saunders/Elsevier, 2010.
  57. The Practice Committee of the American Society for Reproductive Medicine. Current evaluation of amenorrhea. 2008 Compend Pract Comm Reports. 2008;90:S219-25. Available online: http://www.sciencedirect.com/science/article/pii/S0015028208035279
  58. De Souza MJ, Toombs RJ. Amenorrhea Associated With the Female Athlete Triad: Etiology, Diagnosis, and Treatment. In: Santoro NF, Neal-Perry G. editors. Amenorrhea: A Case-Based, Clinical Guide. Springer Science+Business Media; 2010. New York: Springer Science+Business Media, 2010:101-25.
  59. Gordon CM, Leonard MB, Zemel BS. 2013 Pediatric Position Development Conference: executive summary and reflections. J Clin Densitom 2014;17:219-24. [Crossref] [PubMed]
  60. Kendler DL, Borges JL, Fielding RA, et al. The Official Positions of the International Society for Clinical Densitometry: Indications of Use and Reporting of DXA for Body Composition. J Clin Densitom 2013;16:496-507. [Crossref] [PubMed]
  61. Wade GN, Schneider JE, Li HY. Control of fertility by metabolic cues. Am J Physiol 1996;270:E1-19. [PubMed]
  62. Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab 2003;88:297-311. [Crossref] [PubMed]
  63. Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol 1998;84:37-46. [Crossref] [PubMed]
  64. Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res 2004;19:1231-40. [Crossref] [PubMed]
  65. Beidleman BA, Puhl JL, De Souza MJ. Energy balance in female distance runners. Am J Clin Nutr 1995;61:303-11. [Crossref] [PubMed]
  66. Fogelholm GM, Kukkonen-Harjula TK, Taipale SA, et al. Resting metabolic rate and energy intake in female gymnasts, figure-skaters and soccer players. Int J Sports Med 1995;16:551-6. [Crossref] [PubMed]
  67. Mulligan K, Butterfield GE. Discrepancies between energy intake and expenditure in physically active women. Br J Nutr 1990;64:23-36. [Crossref] [PubMed]
  68. Järvinen TLN, Kannus P, Sievänen H. Estrogen and bone--a reproductive and locomotive perspective. J Bone Miner Res 2003;18:1921-31. [Crossref] [PubMed]
  69. Riggs BL, Khosla S, Melton LJ. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998;13:763-73. [Crossref] [PubMed]
  70. Drinkwater BL, Bruemner B, Chesnut C. Menstrual history as a determinant of current bone density in young athletes. JAMA 1990;263:545-8. [Crossref] [PubMed]
  71. Lloyd T, Myers C, Buchanan JR, et al. Collegiate women athletes with irregular menses during adolescence have decreased bone density. Obstet Gynecol 1988;72:639-42. [PubMed]
  72. Bennell K, Matheson G, Meeuwisse W, et al. Risk factors for stress fractures. Sports Med 1999;28:91-122. [Crossref] [PubMed]
  73. Bennell KL, Malcolm SA, Thomas SA, et al. Risk Factors for Stress Fractures in Track and Field Athletes. Am J Sports Med 1996;24:810-8. [Crossref] [PubMed]
  74. Kelsey JL, Bachrach LK, Procter-Gray E, et al. Risk Factors for Stress Fracture among Young Female Cross-Country Runners. Med Sci Sports Exerc 2007;39:1457-63. [Crossref] [PubMed]
  75. Barrow GW, Saha S. Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med 1988;16:209-16. [Crossref] [PubMed]
  76. Weaver CM, Gordon CM, Janz KF, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 2016;27:1281-386. [Crossref] [PubMed]
  77. Baxter-Jones AD, Faulkner RA, Forwood MR, et al. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 2011;26:1729-39. [Crossref] [PubMed]
  78. Matkovic V, Jelic T, Wardlaw GM, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 1994;93:799-808. [Crossref] [PubMed]
  79. Clarke BL, Khosla S. Physiology of Bone Loss. Radiol Clin North Am 2010;48:483-95. [Crossref] [PubMed]
  80. Johnell O, Kanis JA, Oden A, et al. Predictive Value of BMD for Hip and Other Fractures. J Bone Miner Res 2005;20:1185-94. [Crossref] [PubMed]
  81. Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes. Osteoporos Int 1997;7:311-5. [Crossref] [PubMed]
  82. Warren MP, Brooks-Gunn J, Fox RP, et al. Persistent osteopenia in ballet dancers with amenorrhea and delayed menarche despite hormone therapy: a longitudinal study. Fertil Steril 2003;80:398-404. [Crossref] [PubMed]
  83. Sobrino A, Vallejo S, Novella S, et al. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation. Biochem Pharmacol 2017;129:67-72. [Crossref] [PubMed]
  84. Rickenlund A, Eriksson MJ, Schenck-Gustafsson K, et al. Amenorrhea in female athletes is associated with endothelial dysfunction and unfavorable lipid profile. J Clin Endocrinol Metab 2005;90:1354-9. [Crossref] [PubMed]
  85. Zeni Hoch A, Dempsey RL, Carrera GF, et al. Is there an association between athletic amenorrhea and endothelial cell dysfunction? Med Sci Sports Exerc 2003;35:377-83. [Crossref] [PubMed]
  86. Yoshida N, Ikeda H, Sugi K, et al. Impaired endothelium-dependent and -independent vasodilation in young female athletes with exercise-associated amenorrhea. Arterioscler Thromb Vasc Biol 2006;26:231-2. [Crossref] [PubMed]
  87. Southmayd EA, Hellmers AC, De Souza MJ. Food Versus Pharmacy: Assessment of Nutritional and Pharmacological Strategies to Improve Bone Health in Energy-Deficient Exercising Women. Curr Osteoporos Rep 2017;15:459-72. [Crossref] [PubMed]
  88. Dueck CA, Matt KS, Manore MM, et al. Treatment of athletic amenorrhea with a diet and training intervention program. Int J Sport Nutr 1996;6:24-40. [Crossref] [PubMed]
  89. Kopp-Woodroffe SA, Manore MM, Dueck CA, et al. Energy and nutrient status of amenorrheic athletes participating in a diet and exercise training intervention program. Int J Sport Nutr 1999;9:70-88. [Crossref] [PubMed]
  90. Temme KE, Hoch AZ. Recognition and rehabilitation of the female athlete triad/tetrad: a multidisciplinary approach. Curr Sports Med Rep 2013;12:190-9. [Crossref] [PubMed]
  91. Fredericson M, Kent K. Normalization of bone density in a previously amenorrheic runner with osteoporosis. Med Sci Sports Exerc 2005;37:1481-6. [Crossref] [PubMed]
  92. Misra M, Prabhakaran R, Miller KK, et al. Weight gain and restoration of menses as predictors of bone mineral density change in adolescent girls with anorexia nervosa-1. J Clin Endocrinol Metab 2008;93:1231-7. [Crossref] [PubMed]
  93. Zanker CL, Cooke CB, Truscott JG, et al. Annual changes of bone density over 12 years in an amenorrheic athlete. Med Sci Sports Exerc 2004;36:137-42. [Crossref] [PubMed]
  94. Arends JC, Cheung MY, Barrack MT, et al. Restoration of menses with nonpharmacologic therapy in college athletes with menstrual disturbances: a 5-year retrospective study. Int J Sport Nutr Exerc Metab 2012;22:98-108. [Crossref] [PubMed]
  95. Drinkwater BL, Nilson K, Ott S, et al. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA 1986;256:380-2. [Crossref] [PubMed]
  96. Jonnavithula S, Warren MP, Fox RP, et al. Bone density is compromised in amenorrheic women despite return of menses: a 2-year study. Obstet Gynecol 1993;81:669-74. [PubMed]
  97. Wanden-Berghe RG, Sanz-Valero J, Wanden-Berghe C. The Application of Mindfulness to Eating Disorders Treatment: A Systematic Review. Eat Disord 2011;19:34-48. [Crossref] [PubMed]
  98. Aigner M, Treasure J, Kaye W, et al. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of eating disorders. World J Biol Psychiatry 2011;12:400-43. [Crossref] [PubMed]
  99. Bissada H, Tasca GA, Barber AM, et al. Olanzapine in the treatment of low body weight and obsessive thinking in women with anorexia nervosa: a randomized, double-blind, placebo-controlled trial. Am J Psychiatry 2008;165:1281-8. [Crossref] [PubMed]
  100. Brambilla F, Garcia CS, Fassino S, et al. Olanzapine therapy in anorexia nervosa: psychobiological effects. Int Clin Psychopharmacol 2007;22:197-204. [Crossref] [PubMed]
  101. Attia E, Kaplan AS, Walsh BT, et al. Olanzapine versus placebo for out-patients with anorexia nervosa. Psychol Med 2011;41:2177-82. [Crossref] [PubMed]
  102. Hergenroeder AC, Smith EO, Shypailo R, et al. Bone mineral changes in young women with hypothalamic amenorrhea treated with oral contraceptives, medroxyprogesterone, or placebo over 12 months. Am J Obstet Gynecol 1997;176:1017-25. [Crossref] [PubMed]
  103. Warren MP, Miller KK, Olson WH, et al. Effects of an oral contraceptive (norgestimate/ethinyl estradiol) on bone mineral density in women with hypothalamic amenorrhea and osteopenia: an open-label extension of a double-blind, placebo-controlled study. Contraception 2005;72:206-11. [Crossref] [PubMed]
  104. Rickenlund A, Carlström K, Ekblom B, et al. Effects of Oral Contraceptives on Body Composition and Physical Performance in Female Athletes. J Clin Endocrinol Metab 2004;89:4364-70. [Crossref] [PubMed]
  105. Grinspoon SK, Friedman AJ, Miller KK, et al. Effects of a triphasic combination oral contraceptive containing norgestimate/ethinyl estradiol on biochemical markers of bone metabolism in young women with osteopenia secondary to hypothalamic amenorrhea. J Clin Endocrinol Metab 2003;88:3651-6. [Crossref] [PubMed]
  106. Cobb KL, Bachrach LK, Sowers M, et al. The effect of oral contraceptives on bone mass and stress fractures in female runners. Med Sci Sports Exerc 2007;39:1464-73. [Crossref] [PubMed]
  107. Lebow J, Sim L. The influence of estrogen therapies on bone mineral density in premenopausal women with anorexia nervosa and amenorrhea. Vitam Horm 2013;92:243-57. [Crossref] [PubMed]
  108. Leung KC, Johannsson G, Leong GM, et al. Estrogen Regulation of Growth Hormone Action. Endocr Rev 2004;25:693-721. [Crossref] [PubMed]
  109. Weissberger AJ, Ho KK, Lazarus L. Contrasting effects of oral and transdermal routes of estrogen replacement therapy on 24-hour growth hormone (GH) secretion, insulin-like growth factor I, and GH-binding protein in postmenopausal women. J Clin Endocrinol Metab 1991;72:374-81. [Crossref] [PubMed]
  110. Misra M, Katzman D, Miller KK, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res 2011;26:2430-8. [Crossref] [PubMed]
  111. Kam GY, Leung KC, Baxter RC, et al. Estrogens exert route- and dose-dependent effects on insulin-like growth factor (IGF)-binding protein-3 and the acid-labile subunit of the IGF ternary complex. J Clin Endocrinol Metab 2000;85:1918-22. [PubMed]
  112. Cardim HJ, Lopes CM, Giannella-Neto D, et al. The insulin-like growth factor-I system and hormone replacement therapy. Fertil Steril 2001;75:282-7. [Crossref] [PubMed]
  113. Cohen A, Fleischer J, Freeby MJ, et al. Clinical Characteristics and Medication Use among Premenopausal Women with Osteoporosis and Low BMD: The Experience of an Osteoporosis Referral Center. J Womens Health (Larchmt) 2009;18:79-84. [Crossref] [PubMed]
  114. Raghavan P, Christofides E. Elena Christofides. Role of teriparatide in accelerating metatarsal stress fracture healing: a case series and review of literature. Clin Med Insights Endocrinol Diabetes 2012;5:39-45. [Crossref] [PubMed]
  115. Marini JC. Do Bisphosphonates Make Children’s Bones Better or Brittle? N Engl J Med 2003;349:423-6. [Crossref] [PubMed]
  116. Papapoulos SE, Cremers SC. Prolonged bisphosphonate release after treatment in children. N Engl J Med 2007;356:1075-6. [Crossref] [PubMed]
  117. Misra M, Klibanski A. Anorexia nervosa and bone. J Endocrinol 2014;221:R163-76. [Crossref] [PubMed]
  118. Gordon CM, Ackerman KE, Berga SL, et al. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2017;102:1413-39. [Crossref] [PubMed]
  119. Fazeli PK, Wang IS, Miller KK, et al. Teriparatide increases bone formation and bone mineral density in adult women with anorexia nervosa. J Clin Endocrinol Metab 2014;99:1322-9. [Crossref] [PubMed]
  120. Herring SA, Kibler WB, Putukian M. The team physician and the return-to-play decision: a consensus statement-2012 update. Med Sci Sports Exerc 2012;44:2446-8. [Crossref] [PubMed]
  121. Herring SA, Kibler WB, Putukian M. Team Physician Consensus Statement: 2013 update. Med Sci Sports Exerc 2013;45:1618-22. [Crossref] [PubMed]
  122. Matheson GO, Shultz R, Bido J, et al. Return-to-play decisions: are they the team physician’s responsibility? Clin J Sport Med 2011;21:25-30. [Crossref] [PubMed]
  123. Creighton DW, Shrier I, Shultz R, et al. Return-to-Play in Sport: A Decision-based Model. Clin J Sport Med 2010;20:379-85. [Crossref] [PubMed]
译者介绍
张向鑫
苏州市立医院本部骨关节外科副主任,主任医师,医学博士,南京医科大学硕士生导师。中国(江苏)第16期援圭亚那医疗队队员。江苏省333高层次人才培养工程培养对象,苏州市第七批姑苏卫生分层培养重点人才。(更新时间:2021/8/24)

(本译文仅供学术交流,实际内容请以英文原文为准。)

doi: 10.21037/aoj.2017.12.09
Cite this article as: Ranson WA, Patterson DC, Colvin AC. Female athlete triad: past, present, and future directions. Ann Joint 2018;3:4.

Download Citation